Introduction to Nuclear Safeguards Training

Richard Metcalf Idaho National Laboratory

LLNL-INL Safeguards Training Program

June 11, 2009

Quick Acknowledgements

 The following safeguards training has been sponsored by the National Nuclear Security Administration (NA-24) in support of human capital development

Special thanks to our presenters:

Mary Adamic, INL

Robert Bean, INL

Adam Bernstein, LLNL

David Chichester, INL

Bill Domke, LLNL

Arden Dougan, LLNL

Casey Durst, DNE-INL

Jonathan Essner, LLNL

John Luke, LLNL

Richard Metcalf, INL

Mark Schanfein, INL

Ross Williams, LLNL

Overview

- Introduction to the Training
 - Purpose
 - Lecturers
 - Topics to be covered
- Introduction to Nuclear Safeguards
 - Definitions
 - The International Atomic Energy Agency
 - Introduction to Safeguards Methods
- Review

LLNL-INL Safeguards Training

- Series of lectures designed to bring the incoming professional or student to a "baseline" of understanding
- Presented by professionals who are specialized in the fields from Lawrence Livermore National Laboratory and Idaho National Laboratory
- Designed to become a recurrent training program offered each summer for the intern communities in the Department of Energy (DOE) complex

Purpose of LLNL-INL-STP

- Students must be able to understand the major issues in nuclear safeguards
 - Specific vernacular of safeguards
 - Legal basis for nuclear safeguards and security
 - Introduction to the IAEA
 - Common techniques for safeguards
 - Emerging techniques for safeguards
 - Historical and modern challenges in safeguards
 - Interaction of safeguards with other methods of protecting special nuclear material

Lecturers of the Training

 INL: Robert Bean, Mary Adamic, Mark Schanfein, Casey Durst, David Chichester, Richard Metcalf

 LLNL: Adam Bernstein, Bill Domke, Arden Dougan, Jonathan Essner, John Luke, Ross Williams

Topic list of LLNL-INL-STP

Thursday, June 11 Introduction to Nuclear Safeguards

Tuesday, June 16 The Nuclear Fuel Cycle

Thursday, June 18 International Safeguards Systems,
Science & Technical Challenges

Tuesday, June 23
 A Day in the Life of an Inspector

Thursday, June 25
 Material Control and Accounting

Tuesday, June 30 Destructive Analysis Methods

Thursday, July 2 Nondestructive Analysis Methods

Topic list of LLNL-INL-STP

Tuesday, July 7
 Passive & Active Interrogation

Thursday, July 9 Environmental Sampling

Week of July 13 INMM

Tuesday, July 21 Advanced Safeguards Approaches

Thursday, July 23
 Statistics and Safeguards & Basic Process Monitoring

Tuesday, July 28
 The Story of Proliferation

Tuesday, August 4 Open-Source Information: Collection and Analysis

Definitions and Terminology of Safeguards

- Nuclear Safeguards: measures to verify that civil nuclear facilities are not being misused to pursue weapons and associated materials are properly accounted for and are not diverted to undeclared uses
 - This is the operating definition that will be used by the majority of lecturers of this group.
 - Domestic safeguards (in-country, specifically in-USA)
 refers to traditional safeguards (above) as well as physical security measures.
 - Note that safeguards are a method of verification: safeguards are not designed to prevent the diversion of material but rather to identify that it occurred and therefore prevent by deterring.

- Physical security: measures to prevent the theft of nuclear material
 - Sometimes called "Guards, Gates, and Guns"
 - A country cannot "steal" from itself. Physical security prevents insiders and external threats from stealing material from a facility.
- International Safeguards: Safeguards as described previously, administered by the International Atomic Energy Agency

Material	SQ
Direct use nuclear material	
Pu*	8 kg Pu
²³³ U	$8 kg^{233} U$
HEU (²³⁵ U ≥ 20%)	$25~\mathrm{kg}^{235}\mathrm{U}$
Indirect use nuclear material	
U (²³⁵ U < 20%) ^b	75 kg ²³⁵ U (or 10 t natural U or 20 t depleted U)
Th	20 t Th
^a For Pu containing less than 80% ²³⁸ Pu	

^a For Pu containing less than 80% ²³⁸Pu.

- Significant Quantity: The approximate quantity of nuclear material in respect of which, taking into account any conversion process involved, the possibility of manufacturing a nuclear explosive device cannot be excluded.
- Includes machining assumptions not discussed here
 - The basic "unit" for international (IAEA) safeguards.

Information about SQs can be found on IAEA.org and the IAEA safeguards glossary, as well as their existing technical documents.

b Including low enriched, natural and depleted uranium.

- Special Nuclear Material: nuclear material which can be made into a nuclear explosive device
 - In common nomenclature: Highly Enriched Uranium and Plutonium
- Highly Enriched Uranium: Uranium with 20% or greater U-235
- Timeliness Goal: Amount of time that the International Atomic Energy Agency has to detect a diversion of material
 - Related to the "latency" between diversion and weaponization of the material
 - More on this later

- The Treaty on the Non-Proliferation of Nuclear Weapons (NPT): the legal basis for international safeguards, obligating signatories to the international safeguards regime
 - The NPT entered-into-force on March 5, 1970
 - Nuclear-Weapon State (NWS), identified as states which had manufactured and exploded a nuclear explosive device prior to January 1, 1967, are required not to assist or encourage Non-Nuclear-Weapon States, in any way, to acquire a nuclear explosive device(s)
 - Non-Nuclear-Weapon State (NNWS) are required
 - Not to manufacture or otherwise seek to acquire a nuclear explosive device(s)
 - To accept safeguards, under an agreement with the IAEA, on all nuclear material in <u>all</u> peaceful activities

Definitions and Terminology

- Information Circular #153 (INFCIRC153): The basic safeguards framework that is in common use with all NPT signatories.
- Additional Protocol: An addition to the basic safeguards suite which gives greatly expanded powers to the IAEA.
- State System of Accounting and Control (SSAC): the state's system of determining where all of their nuclear material is at the time of a declaration.
- Material Unaccounted For (MUF): Material that is not accounted for by the current measurements. This does not mean it is diverted, as it could be stuck in pipes or otherwise still in the facility.
- Declaration: A formal reporting of material or operations in a facility to the International Atomic Energy Agency.

The International Atomic Energy Agency

- The primary safeguards system in use today is the International Safeguards System of the International Atomic Energy Agency (IAEA)
 - other safeguard systems exist such as the U.S.
 Nuclear Regulatory Commission (NRC)
 Safeguards and Security System and Euratom Safeguards, which are often more rigorous
- While these other safeguard systems are important, due to time constraints we will focus only on the IAEA (international) safeguards system

The International Atomic Energy Agency

- Created in 1957 by the United Nations General Assembly
- 138 Member States (MS)
- 2247 Professionals and Support Staff
- 274 M.US\$ → Regular Budget 2006
- 77.5 M.US\$ → Technical Cooperation Fund
- About 51 M.US\$ →Extra budgetary
- Reports to: United Nations General Assembly (annually), United Nations Security Council (when appropriate), United Nations Economic & Social Council

The IAEA Board of Governors

, Idaho National Laboratory

The International Atomic Energy Agency

- Three primary missions:
 - Promotion of peaceful uses of nuclear energy
 - Develop nuclear safety and security standards, promoting high levels in both as well as the protection of people and the environment.
 - Application of Safeguards
 - The IAEA verifies correctness of a state's declaration to provide assurance on the non-diversion of <u>declared</u> nuclear material;
 - Verifies completeness of a state's declarations to provide credible assurance on the absence of undeclared nuclear material and activities.

Safeguards Agreements

- An agreement for the application of safeguards concluded between the IAEA and a State or a group of States
 - in certain cases, with a regional or bilateral inspectorate, such as Euratom and ABACC (South American, Argentina-Brazil)
 - agreement is concluded either because
 - of the requirements of a project and supply agreement
 - to satisfy the relevant requirements of bilateral or multilateral arrangements
 - at the request of a State to any of that State's nuclear activities
 - Each State's agreement is different.
 - But there are some commonalities, based on type

Non-Compliance

- Violation by a State of its safeguards agreement with the IAEA. For example:
 - the diversion of nuclear material from declared nuclear activities
 - the failure to declare nuclear material required to be placed under safeguards
 - under an additional protocol, the failure to declare nuclear material, nuclear activities, or nuclear related activities required to be declared
 - violation of the agreed recording and reporting system
 - obstruction of the activities of IAEA inspectors
 - interference with the operation of safeguards equipment
- if non-compliance, the IAEA Director General shall report to the IAEA Board of Governors
 - which would call upon the recipient State to remedy any noncompliance
 - There are historical, and current, cases where the State has ejected IAEA inspectors.

International Atomic Energy Agency

- Everyone presenting in this series helps support the IAEA through our research.
- Ensuring that all countries around the world are not diverting material or misusing facilities or working with hidden facilities on a constrained budget is not a trivial task
 - Also, that diversion can be, in some cases, less than 0.1% of a facility's material handling,
 - And States can actively block your inspections, or bulldoze sites before you can inspect them,
 - With a requirement for almost total transparency to the international community.

Safeguards Methods

- Safeguards are executed in several ways
 - Before a facility is built, information about the facility is given to the IAEA on a Design Information Questionnaire
 - The DIQ is part of a larger group of measures in Design Information Verification to ensure facilities are built and operated as designed
 - The DIQ is used to help build the safeguards approach, which is negotiated and added to the safeguards agreement

Safeguards Methods

- The safeguards approach can include several different types of IAEA systems
- These systems fall into several typical categories
 - Tamper Indicating Devices (Seals)
 - Containment and Surveillance (Cameras)
 - Radiation Monitors (Nondestructive Analysis)
 - Can be passive (receiving) or active (emitting)
 - Very small nuclear materials sampling (Destructive Analysis)
 - Swipe samples from the environment
 - Process Monitoring systems to watch the operating parameters of a chemical process
 - Advanced Systems

Tamper Indicating Devices (TIDs)

- TIDS are seals that the agency uses on its cabinets as well as storage casks and other areas for which little to no movement is expected
- These can be fiber optic, metal, plastic, and come in varied shapes, sizes, and types

Containment and Surveillance (C/S)

- Containment and surveillance is the use of observations (often qualitative) as part of the safeguards suite
- The Agency relies heavily on containment and surveillance in many modern facilities as part of the safeguards approach
- The C/S systems are quite robust, but automated analysis remains a challenge because of data overload

Nondestructive Analysis

 Either simply listens, or evokes an echo from material to garner signals <u>without</u> destroying any amount of the material or requiring a sample

 These systems will be explained in more detail by David Chichester in a following lecture

Destructive Analysis

- Requires a small sample pulled from the item or process that you are measuring
- Typically more accurate, but slower, than NDA
- DA is the "workhorse" of most safeguards approaches
- Mary Adamic will present a lecture on this in more detail

Environmental Sampling

- Nuclear material processes do release very trace amounts of materials into the environment
- Analysis of environmental samples can reveal the presence of undeclared activity
- Ross Williams will lecture on this topic on a later date

Process Monitoring

- By watching chemical process information, as well as online NDA, diversions can be detected
- Watching the process helps give a first pass as to anomalies that may be occurring, and the recorded data can lead inspectors to a potential problem

I will lecture about this topic at a later date

In Review

- International Safeguards exists to prevent the use of nuclear materials for weapons purposes
- It is given legal authority by the Nonproliferation Treaty (NPT)
- The International Atomic Energy Agency is the international inspectorate, which uses several methods to ensure that
 - Facilities are not diverting material
 - There are no other facilities than those declared

Next Time

Adam Bernstein will present an overview of the nuclear fuel cycle

